

Webinars Thrombotic Microangiopathies

Hemolytic uremic syndrome and other thrombotic microangiopathies

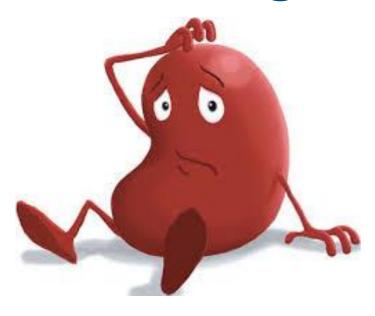
Drug-induced Thrombotic Microangiopathies

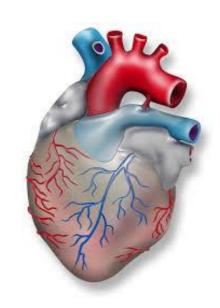
Speaker Dr Steven Grangé Department of Nephrology Rouen University Hospital 24th November 2021

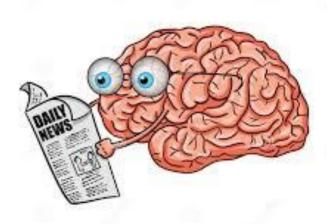
Conflicts of interests

Fees for board membership or symposia: Alexion, Octapharma, Sanofi

Travel support: Alexion, Octapharma, Sanofi

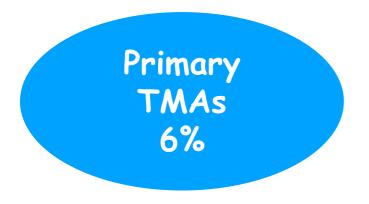


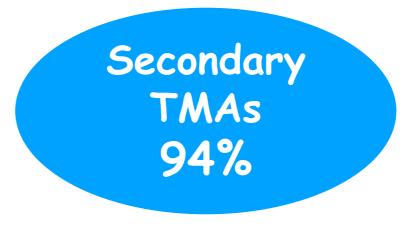

What is TMA?


Microangiopathic hemolytic anemia

Peripheral thrombocytopenia

Organ failure of variable severity




Network
 Hematological
 Diseases (ERN EuroBloodNet)

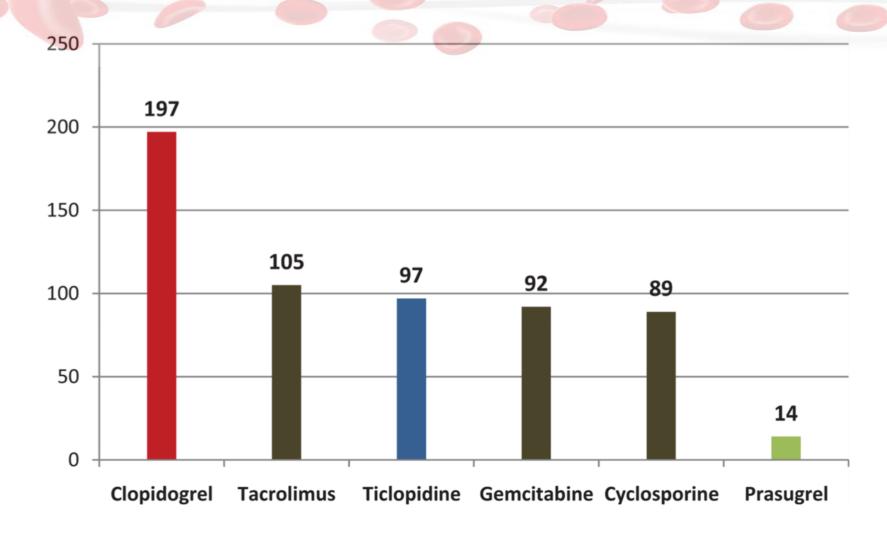
Etiology and outcomes of thrombotic microangiopathies

Retrospective study: 564 consecutive patients between 2009 et 2016
In 4 hospitals (CHU Tours)

35%

33%

26%


19%

Diseases (ERN EuroBloodNet)

Epidemiology

Drugs and number of cases reported to FDA between 1998 and 2011

Ticlopidine: Incidence 0.01%, Low adamts 13 activity in 80% and anti adamts 13 antibodies 100%

(2-12 weeks) -> Plasmapheresis, no relapse

Clopidogrel: Incidence 0.001%, different mechanism, < 2 weeks

Drug-induced thrombotic microangiopathy: Experience of the Oklahoma Registry and the BloodCenter of Wisconsin

Jessica A. Reese,¹ Daniel W. Bougie,² Brian R. Curtis,² Deirdra R Terrell,¹ Sara K. Vesely,¹ Richard H. Aster,² and James N. George¹,³*

TABLE II. Reassessment of Oklahoma Registry Patients Who Had Been Previously Assigned to the Drug-induced Category

		Categories determined by re-assessment (number of pa				
Drug	Total number of patients	Definite	Probable	Possible	Unlikely	
Immune-mediated TMA						
Quinine ³	25	19	1	5	_	
Ticlopidine	2	_	_	2	_	
Clopidogrel	1	_	_	1	_	
Trimethoprim-sulfamethoxazole ^b	1	_	1	_	_	
Alendronate ^c	1	_	_	1	_	
Dose-dependent toxicity-mediated TMA						
Mitomycin	11	_	_	11	_	
Cyclosporine	4	_	_	4	_	
Tacrolimus	4	_	-	3	1	
Gemcitabine	3	1	-	2	_	
Carmustine	1	_	-	1	_	
Cocaine ^d	1	_	_	1	_	
Cytarabine	1	_	_	1	_	
"Ecstasy"e	1	_	_	1	_	
Pentostatin	1	1	-	_	_	
Taxotere	1	_	_	1	_	

1988-2014

Quinine-Induced Thrombotic Microangiopathy: A Report of 19 Patients

Evaren E. Page, MPH, 1,2 Dustin J. Little, MD,3 Sara K. Vesely, PhD,1 and James N. George, MD1,2

19 patients from the Oklahoma Registry 1989-2015

18 with quinine-dependent antibodies reactive with platelets and/or neutrophils

18 women / 19 patients

Quinine exposure: Pill form for 18 patients and tonic water for 1

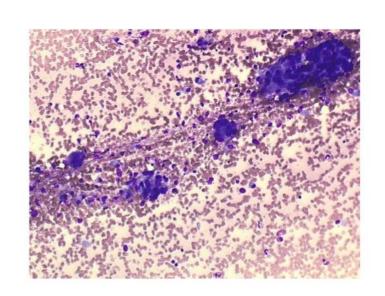
Abnormalities not characteristic of TTP: neutropenia, DIC, liver function abnormalities

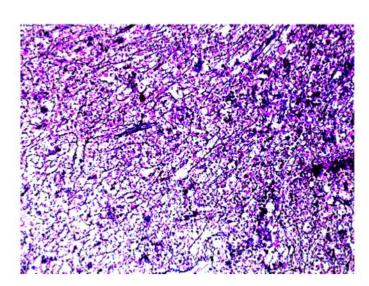
17 of the 18 surviving patients required dialysis

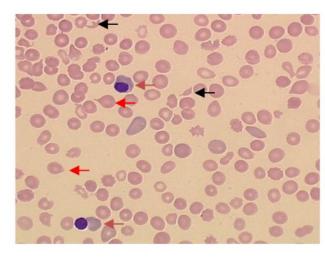
Diseases (ERN EuroBloodNet)

How to distinguish antineoplastic drug-associated TMA from cancer-associated TMA

Ant	Cancer-associated TMA	
Wasting, weight loss, bor	+++	
Hypertension	+++	0
Pulmonary symptoms	++	+
Renal insufficiency	++	±
ADAMTS13	Normal/detectable	Normal/detectable
Tear drop cells Erythroblasts	0	+++
DIC	0	++
Treatment	Stop chemo	Start chemo


Bone marrow exploration


Oberic et al., Oncologist 2009


Patient no.	Results of bone marrow exploration					
1	Erythroblastic hyperplasia					
2	Metastatic cells; fibrosis					
3	Metastatic cells					
4	Metastatic cells					
5	Metastatic cells					
6	Metastatic cells					
7	Metastatic cells					
8	Erythroblastic hyperplasia					
9	Metastatic cells; fibrosis					
10	Metastatic cells					
11	Erythroblastic hyperplasia					
12	Metastatic cells; fibrosis					
13	Metastatic cells; fibrosis					
14	NA					
15	NA					
16	Metastatic cells					
17	NA					
18	NA					
19	Metastatic cells					
20	NA					

Bone marrow metastasis in 12/15 patients explored

Bone marrow fibrosis in 4 patients

- Schistocytes
- Tear drop cells
- Erythroblasts

Mitomycin C-associated TMA

Medina et al., Curr Op Hematol 2001

Table 3. Clinical characteristics of patients with mitomycin C-associated thrombotic thrombocytopenic purpura-hemolytic uremic syndrome

	Lesesne [11]*	Snyder [21]*	Sheldon [12]*	Cantrell [17]*
Number of patients	85	55	39	12
Chemotherapy regimen				
included mitomycin C	99	93	82	100
Cumulative dose of mitomy	cin			
C >40 mg	99	NR	NR	100
Sex (% female)	59	78	59	58
Primary site of carcinoma				
gastric	26	9	44	50
breast	18	44	9	8
colorectal	16	22	20	8
Clinical features				
pulmonary	65	NR	49	100
neurologic	16	NR	18	25
Laboratory features				
microangiopathic				
hemolytic anemia	100	95	90	100
thrombocytopenia	100	78	92	100
renal failure	100	78	92	100
Death	74	55	72	83

^{*}All values except number of patients are percentages. NR, not recorded.

TMA in 2% to 15% of patients receiving MMC

Clinical features typically occur 4 to 8 weeks after the last MMC infusion

Usual cumulated dose > 40 mg

Lung involvement is a frequent feature+++

- Dyspnea
- Lung oedema
- Respiratory distress

Renal failure if cumulated dose > 50-70 mg

ADAMTS13: normal or mildly decreased

Diffuse endothelial lesions induced by the drug

Poor response to plasma exchange ± immunoadsorption

Poor prognosis; death at ~ 4 months

GEMCITABINE-induced TMAs

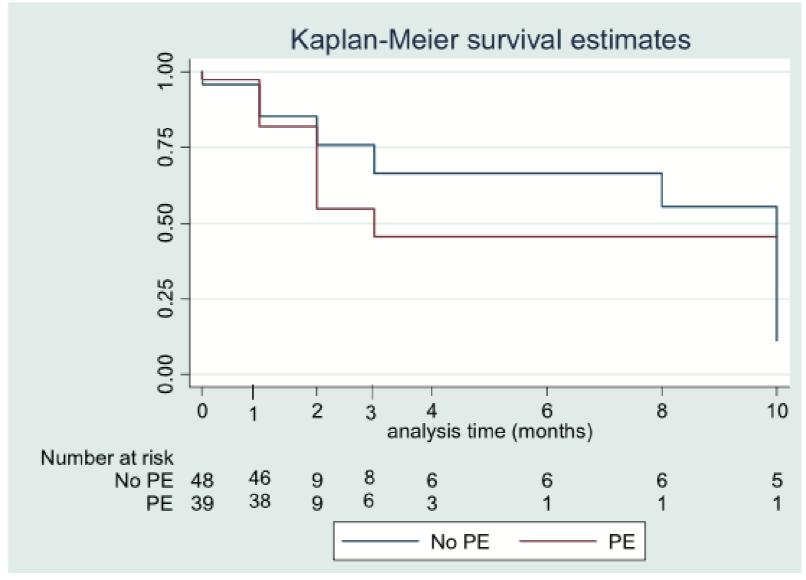
Retrospective study, 1998-2015French Pharmacovigilance network + French TMA Reference Center + Complement Alternative Pathway Registry HEGP VFB n=120

210 days of treatment (median) Cumulative dose of 13 g/m2

62%

Daviet et al. British Journal of Clinical Pharmacology 2019

GEMCITABINE-induced TMAs


		Patients (n = 120)
Type of treatment	Cessation of gemcitabine	100% (52/52)
	Anti-hypertensive treatment	57.4% (54/94)
	Plasma exchange	39.8% (39/98)
	FFP infusion	21.4% (21/98)
	Steroids	15.3% (15/98)
	Eculizumab	5.1% (5/98)
Response to treatment	Complete remission	42.1%
(n = 95)	Haematological remission only	23.1%
	Absence of remission	34.7%
Non-lethal serious	Haemorrhage	11.5% (9/77)
adverse events	Infection	11.5% (9/77)
Death		54.7% (29/52)
Main cause of death	Cancer evolution	34.5%
(n = 29)	TMA	65.5%

GEMCITABINE-induced TMAs

Renal characteristics	PE	No PE
AKI	100% (39/39)	96.5% (56/58)
Creatinine at the time of diagnosis	297.5 (192.5-410)	162 (135-300)
Missing	9 (23.1%)	14 (23.7%)
Need for RRT	45.9% (17/37)	11.9% (7/59)

cnr-mat

0.51

< 0.001

0.0017

RESEARCH Open Access

Eculizumab in gemcitabine-induced thrombotic microangiopathy: experience of the French thrombotic microangiopathies reference centre

Maximilien Grall^{1,2}, Florence Daviet^{3,2}, Noémie Jourde Chiche^{3,2}, François Provot^{4,2}, Claire Presne^{5,2}, Jean-Philippe Coindre^{6,2}, Claire Pouteil-Noble^{7,2}, Alexandre Karras⁸, Dominique Guerrot⁹, Arnaud François¹⁰, Ygal Benhamou^{11,2}, Agnès Veyradier^{12,2}, Véronique Frémeaux-Bacchi^{13,2}, Paul Coppo^{14,2} and Steven Grangé^{1,2*}

Objectives and methods

Describe clinical characteristics of patients and outcome of patients presenting a gemcitabine-induced TMA treated by eculizumab

Observational, retrospective, multicentric French study between 2011 and 2016

Inclusion criterion: gemcitabine-induced TMA treated by eculizumab

Exclusion criterion: TMA attributed to paraneoplastic TMA

Baseline characteristics (1)

12 patients were included

AKI 100% (stage 3 KDIGO 58%), RRT 17% Hypertension 92%, diffuse oedema 83%

Median time from gemcitabine initiation to occurrence: 6 months (range 1.7-16)

Cumulative dose: 27.5 g (range, 9.0-48)

Treatment

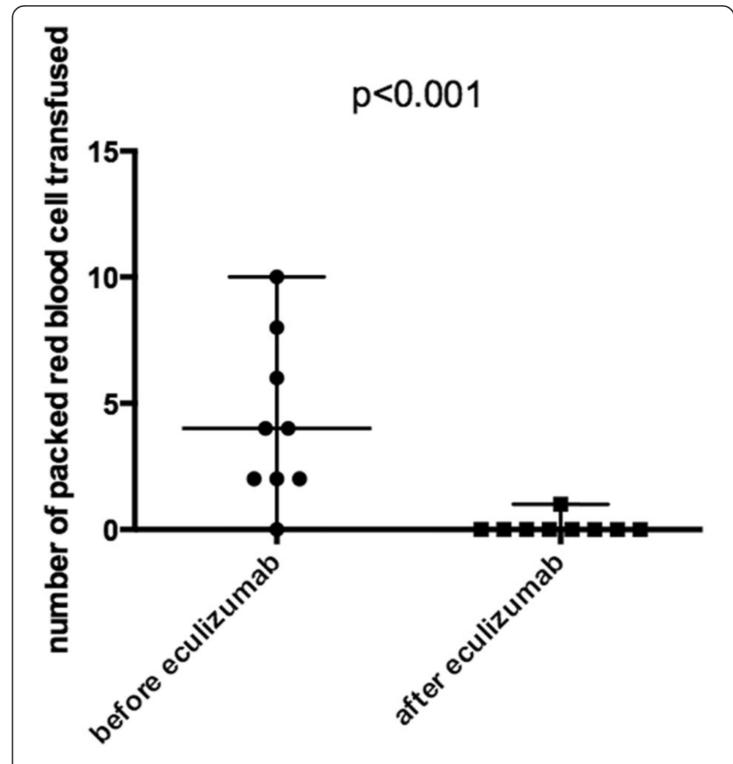

- Eculizumab was started after a median of 15 days (range, 4-44)
- Median number of injections: 4 (range, 2-22)
- 5 patients had previously plasma exchanges with no or incomplete efficacy (median 7 PE; range, 4-9)

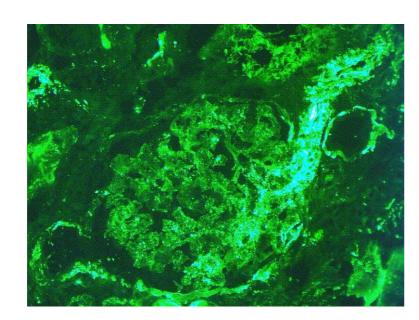
Fig. 2 Comparison of packed red blood cell transfusion before and after eculizumab therapy. Quantitative values are expressed as median with range

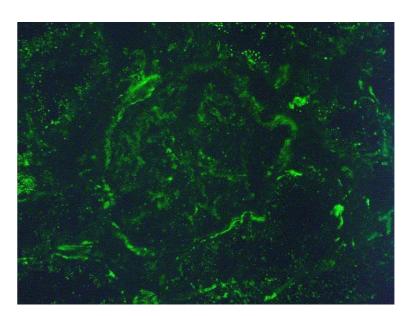
Table 3 Outcome of patients

	Eculizumab group N = 12 (%)	Control group N = 14 (%)
Renal response	10 (83)	9 (64)
Partial	8 (66)	6 (43)
complete	2 (17)	3 (21)
eGFR at onset (ml/min/1.73m ²⁾	19 (0–76)	12 (0–31)
eGFR at the end of follow up	45 (0–119)	33 (0–66)

eGFR Estimated glomerular filtration rate. Quantitative values are expressed as median with range

Grall, Grangé et al. BMC Nephrology 2021




C5b9 expression on kidney biopsies

Three patients had a kidney biopsy:

Overexpression of C5b9 in the glomerular and tubular membrane and in capillary wall

Gemcitabine-induced TMA

Minimal change disease

Is secondary TMA related to complement dysregulation?

Retrospective study, 1999-2017 aHUS French Registry HEGP VFB n = 110 (Drugs 29%, Autoimmune disorders 24%, Inf° 17%, Malignancies 10%, Glomerulopathies 9%, Transplantation 8%, Pancreatitis 3%)

Low C3 = 9Low C3 and C4 =(9 lupus)

Rare Variants (< 0.1%) n = 6 (3 FH, 1 FI, 2)THBD) Pathogenic variants n =

No difference in healthy individuals

However, the homozygous MCP haplotype ggaac was more frequently found in patients with secondary HUS compared with control subjects (17% VS 6%) European

for rare or low prevalence

Is secondary TMA related to complement dysregulation?

aHUS and secondary TMAs

Distinct presentations

No common genetic risk factors Secondary TMA is an acute non relapsing form of HUS

Transient complement activation? (low C3 15%)

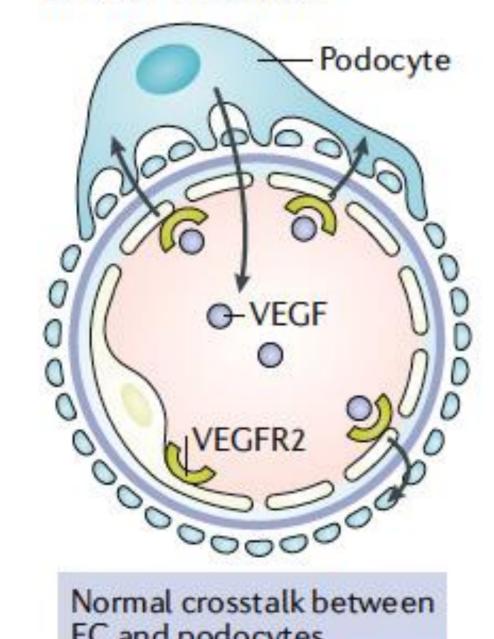
Systematic screening for complement gene variants not warranted in patients with secondary TMA

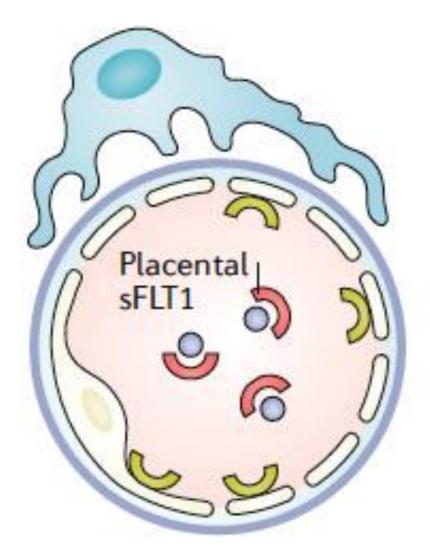
Interest of C5 blockade (n = 38) -> Same prognosis despite more severe patients

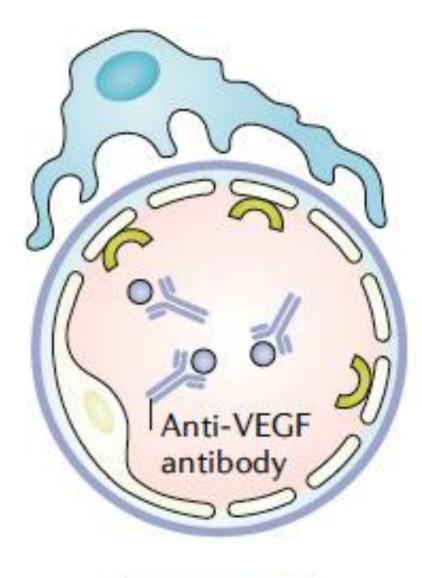
Kidney Diseases Associated With Anti-Vascular Endothelial Growth Factor (VEGF)

An 8-year Observational Study at a Single Center

DIAGNOSTIQUE	MAT, n=73	LGM/HSF, n=21
ıVEGF	66 61 bevacizumab	1
TKI	3	20
DELAI (MOIS) MÉDIANE RANGE	3 0,25 - 26	2 0.25 - 30
CLINIQUE	HTA 83% - DFG N Pu 2.6 g/j Pu<1g: 31%	HTA 48% - DFG N Pu 3.15 g/j Pu<1g : 30%
SUIVI (MOY EN MOIS) SURVIE	15 53 %	13 26 %


Izzedine et al. Medicine 2014

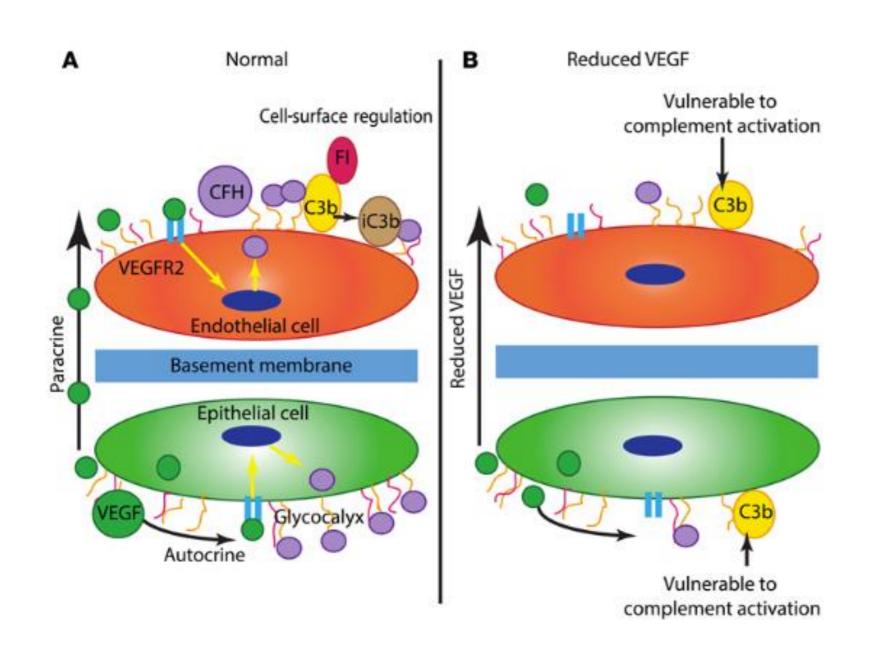



b VEGF inhibition

Normal crosstalk between EC and podocytes

Pre-eclampsia (increased sFLT1)

Anti-VEGF therapy


Jourde-Chiche et al. Nature Reviews Nephrology 2019

Anti VEGF et complément

VEGF is synthesized by podocytes

Paracrine effects on glomerular endothelial cells

-> Production of CFH by these cells

Anti-VEGF -> endothelial cells more vulnerable to complement activation

Proteasome inhibitor associated TMA

TABLE I. Laboratory Values at TMA Diagnosis and Clinical Manifestations.

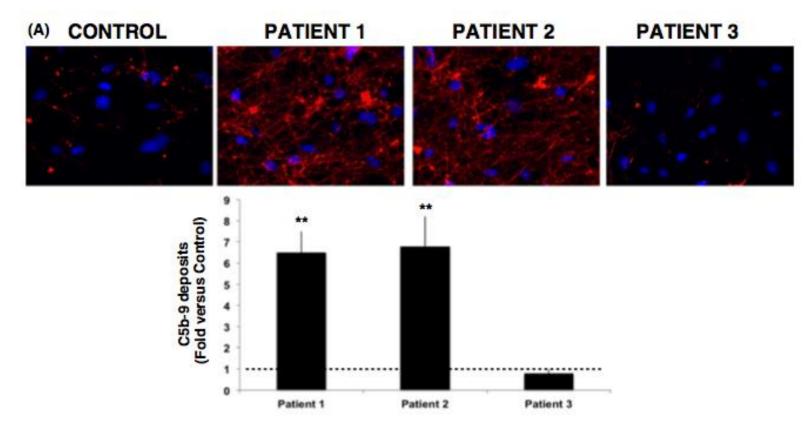
					Platelet						TMA			
	Age and sex	PI used	Timing ^a	Hgb (g dL ⁻¹)	count, ×109/L	Cr (mg dL ⁻¹)	LDH (U L ⁻¹)	Hapto (mg dL ⁻¹)	ADAMTS13 activity	Dialysis required	on renal biopsy	AST (U L ⁻¹)	GI SX	Neuro sx
1	70 M	Bortezomib	21 d	6.9	66	9.9	631	<14		Υ		50	Υ	N
2	64 M	Bortezomib	9 d	9.2	17	0.8	659	<14		N		118	N	N
3	51 M	Bortezomib	21 d	7.5	119	2.65	218	<2	34%	Y	Y	49	N	N
4	80 M	Carfilzomib	5 d	11.2	11	6.1	1920	<14	100%	Y		96	N	Υ
5	79 M	Carfilzomib	8 mo	8.4	18	7.29	3481			Υ		137	Υ	Υ
6	67 M	Carfilzomib	17 mo	10.3	20	3.12	642			N		43	N	N
7	64 F	Carfilzomib	8 mo	11.9	8	1.1	1848	<10	88%	N		123	Υ	N
8	67 F	Carfilzomib	7 d	7.3	34	8.1	698	<8	79%	Υ		36	Υ	N
9	45 M	Carfilzomib	6 mo	4.6	163 ^b	1.75	250	34		N		17	Υ	Υ
10	44 M	Carfilzomib	8 mo	6.7	39	7.28	1220	3		N	Y	58	Υ	N
11	49 M	Carfilzomib	6 d	7.2	18	2.4	1129	<14	82%	N		36	N	N /

Normal ADAMTS 13 (n = 5, median = 82%)

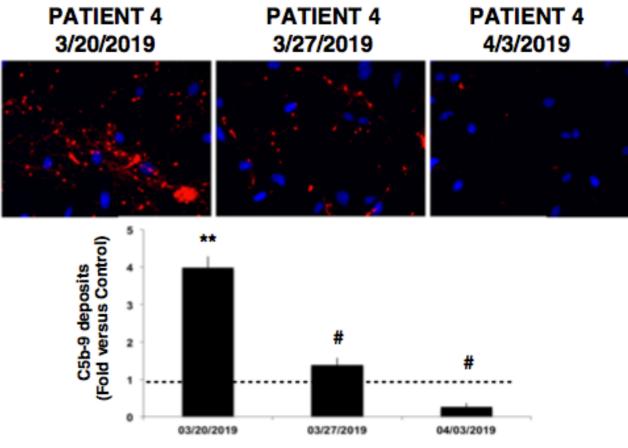
bortezomib = Velcade Carfilzomib = Kyprolis

- All patients had a normal C3, Genetic studies -> no mutations (CAP)
 revealed (n = 2)
- Half of the cases occurring within 14 days of drug initiation, and half occurring later in the treatment course (carfilzomib)
- NFkB inhibition -> VEGF pathway inhibition -> microvascular injury to the glomerular capillaries

Complement as the enabler of carfilzomib-induced thrombotic microangiopathy


Table I. Carfilzomib-induced thrombotic microangiopathy: patient characteristics.

	Patient 1	Patient 2	Patient 3	Patient 4
Demographics and previous history				
Sex	Female	Female	Male	Male
Age, years	59	75	60	41
Diagnosis (year)	MM	MM	MM	Relapsed solitary
	IgG kappa (2012)	BJ/lambda (2013)	IgA lambda (2010)	plasmacytoma (2017)
Number prior line treatments to CFZ	2	1	9	2
Previous autoSCT	Yes	Yes	Yes	Yes
CFZ-regimen administered	Kd (56 mg/m ²)	KRd (27 mg/m ²)	Kd (20 mg/m ²)	KRd (27 mg/m ²)
TMA associated with CFZ				
Date	September 2017	November 2017	August 2018	March 2019
CFZ cycle/day at presentation	Cycle 3, day 15	Cycle 1, day 15	Cycle 1, day 1	Cycle 6, day 2
TMA signs				
Haemoglobin, g/l [120-170 g/l]	68	69	70	64
Haematocrit, % [36-51%]	21	22	20	20
LDH, U/l [250-450 U/l]	3421	590	1645	2665
Haptoglobin, mg/dl [0·3-1·8 mg/dl]	Undetectable	Undetectable	Undetectable	Undetectable
Reticulocytes, $\times 10^9$ /l [25–90 \times 10 9 /l]	157	121	94	230
Platelets, $\times 10^9 / l [150-400 \times 10^9 / l]$	8	67	55	5
Creatinine, mg/dl [0·3-1·3 mg/dl]	6.25	2.77	4.77	13.67
Haemodialysis (number of sessions)	Yes (×4)	Yes (×3)	Yes $(\times 3)$	No



Membrane attack complex (C5b9) deposition on endothelial cells in culture exposed to plasma from patients during the acute phase of the disease suggests complement over activation in 3 out of 4 patients

(B)

Treatment

- Screening +++ (HTA, Urine dipstick test)
- Treat hypertension (ACEIs, ARBs)...
- Specific treatment:

Possibility of spontaneous recovery 6-9 months

- Stop chemotherapy
- Plasmapheresis
- Steroids or other immunotherapies
- Complement C5 inhibition

Conclusions

- FIRST, Cancer-associated TMA and chemo-associated TMA need to be distinguished on the basis of clinical evaluation
- Drug-induced TMAs -> several mechanisms -> endothelial toxicity, immune-mediated
- Normal ADAMTS 13 (except for ticlopidine), complement of alternative pathway disorders
- Importance of early diagnosis -> Blood pressure monitoring, Proteinuria +++
- No guidelines on the treatment which depends on the incriminated drug class ->
 Importance of obtaining an opinion from Regional Reference Centers
- The data presented today is biased!
- Publication bias (success), simple cases unreported
- New French Registry for drug-induced TMAs (underestimated)

